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Abstract. We establish an isomorphism between the center EndH1p1q of Khovanov’s
Heisenberg category H1 and the algebra Λ˚ of shifted symmetric functions defined by
Okounkov-Olshanski. We give a graphical description of the shifted power and Schur
bases of Λ˚ as elements of EndH1p1q, and describe the curl generators of EndH1p1q in
the language of shifted symmetric functions. This latter description makes use of the
transition and co-transition measures of Kerov and the noncommutative probability
spaces of Biane.
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1 Introduction

In [10], Khovanov introduces a graphical calculus of oriented planar diagrams and uses
it to define a linear monoidal category H1, which he proposes as a categorification of the
Heisenberg algebra. We denote by EndH1p1q the endomorphism algebra of the monoidal
unit in H1. The commutative algebra EndH1p1q is, by definition, the algebra of closed
oriented planar diagrams modulo the relations of the Khovanov graphical calculus. In
his study of morphism spaces of H1, Khovanov introduces two sets of generators for
EndH1p1q: the clockwise curls tckukě0 and the counterclockwise curls tc̃kukě2. He then
establishes algebra isomorphisms

EndH1p1q – Crc0, c1, c2, . . . s – Crc̃2, c̃3, c̃4, . . . s,

and describes a recursion for expressing the clockwise and counterclockwise curls in
terms of each other. He then relates H1 to representation theory by defining a sequence
of monoidal functors fH

1

k from H1 to bimodule categories for symmetric groups. A
consequence of the existence of these functors is the existence of surjective algebra ho-
momorphisms,

fH
1

n : EndH1p1q ÝÑ ZpCrSnsq,
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from EndH1p1q to the center of the group algebra of each symmetric group. Based in part
on this, Khovanov suggests that there should be a close connection between EndH1p1q
and the asymptotic representation theory of symmetric groups. Furthermore, one might
hope that EndH1p1q in fact gives a diagrammatic description of some algebra of pre-
existing combinatorial interest.

The main goal of the current paper is to make precise the connection between EndH1p1q
and both the asymptotic representation theory of symmetric groups and algebraic com-
binatorics. We do this by establishing an isomorphism between

ϕ : EndH1p1q ÝÑ Λ˚,

where Λ˚ is the shifted symmetric functions of Okounkov-Olshanski [13]. (See Theo-
rem 11.) The algebra of shifted symmetric functions Λ˚ is a deformation of the alge-
bra of symmetric functions. As is the case for EndH1p1q, there are surjective algebra
homomorphisms

f Λ˚
n : Λ˚ ÝÑ ZpCrSnsq,

to the center of the group algebra of each symmetric group. The isomorphism ϕ :
EndH1p1q ÝÑ Λ˚ is canonical, in that it intertwines the homomorphisms fH

1

n and f Λ˚
n .

The isomorphism ϕ : EndH1p1q ÝÑ Λ˚ allows us to give a graphical description of
several important bases of Λ˚. For example, the shifted power sum denoted p#

λ in [13]
appears in EndH1p1q as the closure of a permutation of cycle type λ. The shifted Schur
function s˚λ appears as the closure of a Young symmetrizer of type λ. (See Corollary 12).

In the other direction, it is also reasonable to ask for a description of the image of
Khovanov’s curl generators ck and c̃k as elements of Λ˚. It turns out that the right lan-
guage for such a description is that of noncommutative probability theory. In [7], Kerov
introduces, for each partition λ, a pair of finitely supported probability measures on
R; these probability measures are known as the transition and co-transition measures,
or sometimes as growth and decay. In work of Biane [1], these probability measures
appear as the compactly-supported measures associated to self-adjoint operators on a
noncommutative probability space, and as a result they are basic objects of interest at
the intersection of representation theory and noncommutative probability theory. In par-
ticular, the moments and Boolean cumulants of the transition and co-transition measures
may be regarded as elements of Λ˚. In Theorem 13, we show that the isomorphism ϕ

takes Khovanov’s curl generators ck and c̃k to scalar multiples of the kth moments of
Kerov’s transition and co-transition measures. In fact, the close relationship between the
transition and co-transition measures themselves yields two independent descriptions of
the image of the curl generator ck: it is equal to a scalar multiple of both the kth moment
of the co-transition measure and the pk ` 2qth Boolean cumulant of the transition mea-
sure. The observation that the Boolean cumulants of the transition measure are equal to
the moments of the co-transition measure seems to be new, and is closely connected to
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the adjointness of induction and restriction functors between representation categories
of symmetric groups. A dictionary between several of the bases of EndH1p1q and Λ˚ is
given in Table 1.

The existence of a relationship betweenH1 and free probability – and indeed, much of
this paper – was anticipated by Khovanov in [10]. The relationship between generators
of EndH1p1q and the noncommutative probability spaces of [1] may be seen as a further
manifestation of the “planar structure" of free probability; the many connections between
noncommutative probability and other mathematical subjects with planar structure are
emphasized in the work of Guionnet, Jones and Shlyakhtenko [3].

This text is an extended abstract of the preprint [11], where complete proofs and
additional background can be found.

2 The symmetric group and its normalized character the-
ory

We begin by establishing notation related to partitions and Young diagrams. Let Pn be
the set of partitions of n and P :“

Ť

ně0 Pn. We freely identify µ P P with its corre-
sponding Young diagram, which we draw using Russian notation (see Example 1). If

is a cell in the ith row and jth column of µ then the content of is defined as
contp q :“ j´ i. We say that a cell R µ is i-addable with respect to µ if it has content i
and adding it to µ gives a Young diagram. We say that a cell P µ is i-removable with
respect to µ if it has content i and removing it from µ gives a Young diagram. We call
two sequences a1, . . . , ad and b1, . . . , bd´1 interlacing when

a1 ă b1 ă a2 ă ¨ ¨ ¨ ă ad´1 ă bd´1 ă ad.

The center of this pair of sequences is defined as the quantity pa1 ` ¨ ¨ ¨ ` adq ´ pb1 `

¨ ¨ ¨ ` bd´1q. There is a bijection between Young diagrams and pairs of integer-valued
interlacing sequences a1, . . . , ad and b1, . . . , bd´1 with center 0. Given µ the corresponding
sequence a1, . . . , ad is the ordered list of all aj such that there exists an aj-addable cell
with respect to µ, while b1, . . . , bd´1 is the ordered list of all bj such that there exists a bj-
removable cell with respect to µ. It is clear that a1, . . . , ad and b1, . . . , bd´1 are interlacing.
We denote by µpjq the Young diagram that we obtain by adding a cell of content aj, so
that contpµpjq{µq “ aj. Similarly, we denote by µpjq the Young diagram that we obtain by
removing a cell of content bj from µ, so that contpµ{µpjqq “ bj.

Example 1. Let µ “ p4, 2, 1q. Then µ yields the interlacing sequences

´3 ă ´1 ă 1 ă 4 and ´2 ă 0 ă 3.
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a4b3a3b2a2b1a1

43210´1´2´3

Let Sn be the symmetric group with Coxeter generators s1, . . . , sn´1. If g P Sn has
cycle type λ P Pn, then we write shpgq :“ λ. For k ď n, there is an embedding
ιk,n : CrSks ãÑ CrSns called the standard embedding which sends Sk to the subgroup gener-
ated by s1, . . . , sk´1.

Let Lλ be the simple CrSns-module (i.e. the irreducible Sn representation) associated
to λ P Pn and χλ : CrSns Ñ C its character. Abusing notation, we write χλpµq for χλpgq
when shpgq “ µ. The normalized character rχλ :

À

kďn CrSks Ñ C associated to λ is defined
so that for x P CrSks,

rχλ
pxq :“

χλpιk,npxqq
dim Lλ

“
χλpιk,npxqq

χλp1q
. (2.1)

Definition 2. For µ “ pµ1, . . . , µtq P Pk with k ď n, set

Aµ,n “
ÿ

pi1, . . . , iµ1q . . . pik´µt`1, . . . , ikq (2.2)

where this sum is taken over all distinct k-tuples pi1, . . . , ikq of elements from t1, 2, . . . , nu. We
call Aµ,n the normalized conjugacy class sum associated to µ in CrSns.

The elements Aµ,n belong to ZpCrSnsq and for λ P Pn

rχλ
pAµ,nq “ pn ç kq

χλpµY 1n´kq

dim Lλ
(2.3)

where pn ç kq is the falling factorial power, which is defined as pn ç kq “ npn´ 1q . . . pn´ k` 1q
for integers k, n with 0 ă k ď n.

Finally, recall that the Jucys-Murphy elements tJiu1ďkďn Ď CrSns, are defined as

J1 “ 0, and Jk “ p1, kq ` p2, kq ` ¨ ¨ ¨ ` pk´ 1, kq, 2 ď k ď n.

2.1 The transition measure and co-transition measure

In this section we review the transition and co-transition measures associated to a Young
diagram. Assume that λ P Pn and let a1, . . . , ad and b1, . . . , bd´1 be the interlacing se-
quences associated to λ. Recall that λp1q, . . . , λpdq are the partitions of n ` 1 such that
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contpλpiq{λq “ ai, while λp1q, . . . , λpd´1q are the partitions of n´ 1 such that contpλ{λpiqq “
bi.

For λ, the transition measure pωλ and co-transition measure qωλ on R are defined as

pωλ :“
d
ÿ

i“1

dimpLλpiqq

pn` 1qdimpLλq
δai and qωλ :“

d´1
ÿ

i“1

dimpLλpiqq

dimpLλq
δbi

respectively, where δx is the Dirac delta measure with support on x P R. These probabil-
ity measures were first investigated by Kerov [7], [8]. They are fundamental tools in the
study of the asymptotic representation theory of symmetric groups and its connection
to free probability.

The kth moments associated to pωλ and qωλ are given by

pmkpλq “
d
ÿ

i“1

dimpLλpiqq

pn` 1qdimpLλq
ak

i and qmkpλq “
d´1
ÿ

i“1

dimpLλpiqq

dimpLλq
bk

i

respectively. Boolean cumulants linearize convolution of probability measures under
the notion of Boolean independence [14] and can be defined recursively such that if
tpbkpλqukě1 are the Boolean cumulants associated to pωλ then,

k
ÿ

i“1

pmk´ipλqpbipλq “ pmkpλq. (2.4)

Proposition 3. Let λ P P and k ě 0, then pb1pλq “ 0 and pbk`2pλq “ |λ| qmkpλq.

There is a more algebraic approach to the transition measure due to Biane [1]. Let
prn´1 : CrSns Ñ CrSn´1s Ă CrSns be the projection map so that for g P Sn, prn´1pgq “ g
if g P Sn´1 and 0 otherwise.

Proposition 4. For λ P Pn,
pmkpλq “ rχλ

rprnpJ
k
n`1qs (2.5)

and
pbk`2pλq “ |λ| qmkpλq “ rχλ

´

n
ÿ

i“1

si . . . sn´1 Jk
nsn´1 . . . si

¯

. (2.6)

Proof. The statement of (2.5) appears in [2, Section 4]. A detailed proof can be found in
[4, Theorem 9.23]. (2.6) follows from the fact that rχλ is a class function and from the
spectral decomposition of Jn [15].

Proposition 4 is related to the fact that we are working in a noncommutative proba-
bility space (that is, a von Neumann algebra equipped with a normal faithful trace). In
our case the algebra is EndpLλq bMn`1pCq and pωλ then arises from the distribution of a
self-adjoint element in this algebra [1, Proposition 3.3].
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3 The shifted symmetric functions Λ˚

The algebra of shifted symmetric functions Λ˚ is a deformation of the classical symmetric
functions Λ. Elements of Λ˚ are “shifted symmetric”, that is, they become symmetric in
the new variables x1i “ xi ´ i. For a detailed study of Λ˚, see [13]. Λ˚ contains shifted
analogs of elements from Λ. These include the shifted Schur functions ts˚λuλPP [13], as well
as the elementary shifted functions te˚kukě0 and complete shifted functions th˚kukě0 defined by
e˚k :“ s˚

p1kq
and h˚k :“ s˚

pkq respectively. Let F be the linear isomorphism F : Λ Ñ Λ˚ which

sends the classical Schur function sλ ÞÑ s˚λ. Define the element p#
λ P Λ˚ to then be

p#
λ :“ Fppλq, (3.1)

where pλ is the power sum symmetric function in Λ. The elements p#
λ are one of several

shifted analogues of the power sums. p#
1, p#

2, p#
3 . . . are algebraically independent and

generate Λ˚ [6]. Note that unlike classical power sum symmetric functions, in general
p#

λ ‰ p#
λ1

p#
λ2

. . . p#
λr

for λ “ pλ1, . . . , λrq.

3.1 Λ˚ as functions on P
Let FunpP , Cq be the algebra of functions from P to C with pointwise multiplication.
Viewing µ “ pµ1, . . . , µtq P P as the sequence pµ1, . . . , µt, 0, 0, . . . q, we can evaluate f P Λ˚

on µ by setting
f pµq “ f pµ1, . . . , µt, 0, 0, . . . q. (3.2)

Since pµ1, . . . , µt, 0, 0, . . . q has only a finite number of nonzero values, (3.2) is well-defined.
In fact f is uniquely defined by its values on P. Thus Λ˚ may be realized as a subalgebra
of FunpP , Cq [9], [13].

Proposition 5. [13] For µ P Pk, λ P Pn,

p#
µpλq “

#

pnçkq
dim Lλ χλpµY 1n´kq k ď n
0 otherwise.

(3.3)

Remark 6. We will later use the fact that p#
1 “ x1` x2` . . . , so that p#

1pλq “ |λ| for all λ P P .

In Section 2.1 we introduced the moments t pmkpλqu (respectively t qmkpλqu) of the tran-
sition measure (respectively co-transition measure) associated to a partition λ and the
corresponding Boolean cumulants tpbkpλqu. We can interpret all of these as elements of
FunpP , Cq via

λ
pmk
ÞÝÝÑ pmkpλq, λ

qmk
ÞÝÝÑ qmkpλq, and λ

pbk
ÞÝÑ pbkpλq.

Proposition 7. [12, Theorem 6.4] As elements of FunpP , Cq, pmk and pbk belong to Λ˚.

Remark 8. In [12] Section 5, Lassalle shows that with the appropriate alphabet Aλ (which is
specific to each partition λ), pmkpλq “ hkpAλq and pbkpλq “ p´1qk´1ekpAλq.
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4 The algebra EndH1p1q

In [10], Khovanov defined an additive C-linear monoidal category H1 which we will call
the Heisenberg category. The unit object in H1 is denoted by 1. In this paper we study
the endomorphism algebra EndH1p1q. EndH1p1q is a C-algebra generated by planar di-
agrams modulo local relations. The diagrams are closed oriented compact 1-manifolds
immersed in the strip Rˆ r0, 1s, modulo isotopy. Multiplication corresponds to juxtapo-
sition of diagrams. The local relations are:

“ “ ´ (4.1)

“ 1 “ 0 (4.2)

“ “

.

(4.3)

The relations (4.1)-(4.2) are motivated by the Heisenberg relation pq “ qp` 1, where
p and q are the two generators of the Heisenberg algebra, while the relations (4.3) are
motivated by the symmetric group relations.

It is convenient to denote a right curl by a dot on a strand, and a sequence of d right
curls by a dot with a d next to it:

• :“

,

•d :“
•
•
•
•

d dots

.

The relations (4.3) allow us to identify elements of CrSns with linear combinations of
diagrams with n upward oriented strands. For x P CrSns our notation for such a linear
combination of diagrams is a box with an x in it

¨ ¨ ¨

x

.



8 H. Kvinge, A. Licata, S. Mitchell

Next set

ck :“
k

and c̃k :“
k

.

Theorem 9. [10, Prop. 3] There are algebra isomorphisms

EndH1p1q – Crc0, c1, . . . s – Crc̃2, c̃3, . . . s. (4.4)

Note that it follows from the relations in (4.2) that c̃0 “ 1 and c̃1 “ 0.

Lemma 1. [10, Prop. 2] For k ą 0,

c̃k`1 “

k´1
ÿ

i“0

c̃ick´1´i. (4.5)

Let Eλ be the Young idempotent associated with λ so that CrSnsEλ – Lλ. Also let
σλ P Sn be an element of cycle type λ and set

αλ :“
¨¨¨

σλ

,

Ẽλ :“
dim Lλ

1 ¨¨¨

Eλ

.

Because the diagrams are closed, the local relations imply that all choices of σλ give
the same element of EndH1p1q, so αλ is well-defined. We write αk :“ αpkq.

Proposition 10. The elements α1, α2, . . . are algebraically independent generators of EndH1p1q.

For each n ě 0, Khovanov defines a functor fH
1

n : H1 Ñ S 1n, where S 1n is a bimodule
category for symmetric groups whose objects are all right CrSns-modules (see [10] for
details). When restricted to EndH1p1q, fH

1

n can be interpreted as a surjective homomor-
phism into ZpCrSnsq. Below we give the value of fH

1

n on ck, c̃k, and αk in EndH1p1q.

Lemma 2. If n ě 1, then

1. fH
1

n pckq “

n
ÿ

i“1

si ¨ ¨ ¨ sn´1 Jk
nsn´1 ¨ ¨ ¨ si,

2. fH
1

n pc̃kq “ prnpJ
k
n`1q.

3. fH
1

n pαµq “

#

Aµ,n if |µ| ď n
0 otherwise.
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5 The isomorphism ϕ : EndH1p1q ÝÑ Λ˚

In this section we establish the algebra isomorphism EndH1p1q – Λ˚. The proof is some-
what analogous to a proof of Ivanov and Kerov [5, Theorem 9.1].

For any λ P Pn, composing fH
1

n with the normalized character rχλ gives a map

prχλ
˝ fH

1

n q : EndH1p1q Ñ C

and allows us to define a homomorphism ϕ : EndH1p1q Ñ FunpP , Cq. For x P EndH1p1q,

rϕpxqspλq :“ prχλ
˝ fH

1

n qpxq.

Combining part 3 of Lemma 2 with equation (2.3) implies that for µ P Pk

rϕpαµqspλq “

#

pnçkq
dim Lλ χλpµY 1n´kq if k ď n
0 otherwise.

(5.1)

Theorem 11. The map ϕ induces an algebra isomorphism EndH1p1q Ñ Λ˚ Ď FunpP , Cq with
αµ

ϕ
ÞÝÑ p#

µ.

Proof. Let λ P Pn. ϕ is an algebra homomorphism because fH
1

n is a homomorphism from
EndH1p1q to ZpCrSnsq and rχλ is a homomorphism when restricted to ZpCrSnsq. By Propo-
sition 5 and (5.1), αµ maps to p#

µ. Since the tp#
kukě1 (respectively tαkukě1) are algebraically

independent generators of Λ˚ (respectively EndH1p1q), ϕ must be an isomorphism.

Corollary 12. The isomorphism ϕ sends Ẽλ
ϕ
ÞÝÑ s˚λ.

Theorem 11 and Corollary 12 give graphical realizations of some important bases of
Λ˚. Now we go the other way, and describe Khovanov’s curl generators c̃k and ck as
elements of Λ˚. It is this description that makes an explicit connection between H1 and
the transition and co-transition measures of Kerov.

Theorem 13. The isomorphism ϕ sends:

1. c̃k ÞÑ pmk P Λ˚,

2. ck ÞÑ p#
1 qmk “

pbk`2 P Λ˚.

Proof. This follows from Proposition 4 and Lemma 2.

Remark 14. Theorem 13 and Remark 8 together imply that the recursive relationships for t pmku

and tpbku and the recursive relationships for tcku and tc̃ku in Lemma 1 are both consequences of
the well-known relationship between the elementary and homogeneous symmetric functions:

k
ÿ

i“0

p´1qieihn´i “ 0.
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Λ˚ diagram in EndH1p1q

p#
λ

¨̈¨
σλ

s˚λ
¨̈¨

dim Lλ
1 Eλ

h˚k
¨̈¨

Epkq

e˚k
¨̈¨

Ep1kq

pmk

k

pbk`2 “ p#
1 qmk

k

Table 1: A dictionary between Λ˚ and diagrams in EndH1p1q.

Example 15. In Λ˚ we have p#
p2qp

#
p2q “ p#

p2,2q ` 4p#
p3q ` 2p#

p1,1q. In EndH1p1q this appears as

“ ` 4 ` 2

and can be computed independently via the local relations.

In [10], Khovanov introduced three involutive autoequivalences on H1. Only one of
these, which we denote as ξ, acts non-trivially on EndH1p1q where it gives an involutive
algebra automorphism. For diagram D P EndH1p1q, we have ξpDq :“ p´1qcpDqD where
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cpDq is the total number of dots and crossings in the diagram. In Section 4 of [13],
Okounkov and Olshanski identified an involutive algebra automorphism I : Λ˚ Ñ Λ˚

such that for f P Λ˚ and λ P P , rIp f qspλq “ f pλ1q where λ1 is the conjugate partition to
λ.

Proposition 16. The involution ξ on EndH1p1q coincides with the involution I on Λ˚.
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